The Impact of Reduced Gravity on Oscillatory Mixed Convective Heat Transfer around a Non-Conducting Heated Circular Cylinder

Author:

Ullah Zia,Ashraf MuhammadORCID,Sarris Ioannis E.ORCID,Karakasidis Theodoros E.ORCID

Abstract

The present analysis addresses the impact of reduced gravity and magnetohydrodynamics on oscillating mixed-convective electricallyconducting fluid flow over a thermal, non-conducting horizontal circular cylinder. In reduced gravity, buoyancy forces may induce fluid motion due to a weak gravitational field but in non-gravity forces, fluid motion can be induced by a variety of factors, including surface tension and density variations. The fluid motion is governed by connected nonlinear partial differential equations which are converted into convenient equations by applying a finite-difference scheme with the primitive transformation and a Gaussian elimination technique. The numerical solutions of the connected dimensionalized equations were obtained for various emerging dimensionless parameters, reduced gravity parameter Rg, Prandtl number Pr, and some other fixed parameters. First, the fluid velocity, temperature distribution and magnetic-field profiles were obtained and then these profiles were used to examine the oscillating quantities of skinfriction, oscillating heat transfer and oscillating rate of currentdensity. The FORTRAN software was used for the numerical results and these results were displayed on Tech Plot. The fluid velocity and magnetic profile were increased at the π/2 station as reduced gravity increased but the dimensionless temperature of the fluid attained a maximum magnitude as reduced gravity was decreased. The larger amplitude of the oscillating coefficients of τt and τm was concluded with a prominent variation for each λ in the presence of reduced gravity. Physically, this could be because an increase in the decreased gravity parameter impacts the fluid flow’s driving potential along a thermal, non-conducting horizontalcylinder.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3