Abstract
Despite the use of transition metal dichalcogenides being widespread in various applications, the knowledge and applications of MoxW1−xS2 compounds are relatively limited. In this study, we deposited a MoW alloy on a Si substrate using a sputter system. Consequently, we successfully utilized a furnace to sulfurize the MoW alloy from 800 to 950 °C, which transferred the alloy into a MoxW1−xS2 ternary compound. The Raman spectra of the MoxW1−xS2 samples indicated an additional hybridized Raman peak at 375 cm−1 not present in typical MoS2 and WS2. With increasing sulfurization temperature, the scanning electron microscopy images revealed the surface morphology of the MoxW1−xS2 gradually becoming a sheet-like structure. The X-ray diffraction results showed that the crystal structure of the MoxW1−xS2 tended toward a preferable (002) crystal orientation. The I–V results showed that the resistance of MoxW1−xS2 increased when the samples were sulfurized at a higher temperature due to the more porous structures generated within the thin film. Furthermore, a high-temperature coefficient of resistance for the MoxW1−xS2 thin film sulfurized at 950 °C was about −1.633%/K−1. This coefficient of resistance in a MoxW1−xS2 thin film indicates its suitability for use in thermal sensors.
Funder
Ministry of Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献