Modal Decomposition of the Precessing Vortex Core in a Hydro Turbine Model

Author:

Litvinov IvanORCID,Sharaborin DmitriyORCID,Gorelikov Evgeny,Dulin VladimirORCID,Shtork SergeyORCID,Alekseenko Sergey,Oberleithner KilianORCID

Abstract

We report on the experimental study of a precessing vortex core (PVC) in an air model of a Francis turbine. The focus is placed on the modal decomposition of the PVC that occurs in the draft tube of the model turbine for a range of operation conditions. The turbulent flow fluctuations in the draft tube are assessed using stereo particle image velocimetry (PIV) measurements. Proper orthogonal decomposition (POD) is applied to the antisymmetric and symmetric components of the velocity fields to distinguish the dynamics of the azimuthal instabilities. The pressure pulsations induced by the PVC are measured by four pressure sensors mounted on the wall of the hydro turbine draft tube. Spatial Fourier decomposition is applied to the signals of the pressure sensors to identify the contributions of azimuthal modes, m=1 and m=2, to the total pressure fluctuations. The analysis based on velocity and pressure data shows similar results regarding the identification of the PVC. The contribution of the m=2 mode to the overall turbulent kinetic energy is significant for the part load regimes, where the flow rates are twice as low as at the best efficiency point (BEP). It is also shown that this mode is not the higher harmonic of the PVC, suggesting that it is driven by a different instability. Finally, we show a linear fit of the saturation amplitudes of the m=1 and m=2 oscillations to determine the critical bifurcation points of these modes. This yields critical swirl numbers of Scr=0.47 and 0.61, respectively. The fact that the PVC dynamics in hydro turbines are driven by two individual instabilities is relevant for the development of tailored active flow control of the PVC.

Funder

Russian Foundation for Basic Research

State contract with IT SB RAS

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3