Abstract
Soil shear strength is an important indicator of soil erosion sensitivity and the tillage performance of the cultivated layer. Measuring soil shear strength at a field scale is difficult, time-consuming, and costly. This study proposes a new method to predict soil shear strength parameters (cohesion and internal friction angle) by combining cone penetration test (CPT) data and soil properties. A portable CPT measuring device with two pressure sensors was designed to collect two CPT data in farmland, namely cone tip resistance, and cone side pressure. Direct shear tests were performed in the laboratory to determine the soil shear strength parameters for 83 CPT data collection points. Two easily available soil properties (water content and bulk density) were determined via the oven-drying method. Using the two CPT data and the two soil properties as predictors, three machine learning (ML) models were built for predicting soil cohesion and the internal friction angle, including backpropagation neural network (BPNN), partial least squares regression (PLSR), and support vector regression (SVR). The prediction performance of each model was evaluated using the coefficient of determination (R2), the root-mean-square error (RMSE), and the relative error (RE). The results suggested that among all the evaluated models, the BPNN model was the most suitable prediction model for soil cohesion, and the SVR model performed best in predicting soil internal friction angle. Thus, our findings provide a foundation for the convenient and low-cost measurement of soil shear strength parameters.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献