Development of the Architecture and Reconfiguration Methods for the Smart, Self-Reconfigurable Manufacturing System

Author:

Lee Sangil,Ryu KwangyeolORCID

Abstract

Over recent decades, the demand for smarter and more intelligent manufacturing systems has increased in order to meet the growing requirements of customers. Manufacturing systems are termed as smart manufacturing systems (SMSs); these systems are capable of fully integrated autonomous operation. Specifically, the concept of autonomous systems and functions has been adopted for next generation manufacturing systems (NGMSs). Among these NGMSs, the fractal manufacturing system (FrMS) exhibits several characteristics that are similar to those of SMSs. Therefore, in this paper, a smart, self-reconfigurable manufacturing system (SSrMS) based on the FrMS is proposed. The proposed SSrMS architecture was designed for realizing self-reconfiguration functions based on the FrMS concept. SSrMS exhibits a fractal structure, which enables the distribution of control features; this also constitutes the fundamental basis of autonomous operation and reconfiguration between each fractal. SSrMS architecture includes the use of big data, digital facilities, and simulations. Furthermore, we introduce three reconfiguration methods to conduct system reconfiguration, which are a goal decision model, a negotiation model, and a sustainability assessment method. The goal decision model was developed to determine a goal of each fractal to achieve the system’s goal. In other words, each fractal can decide a goal to achieve the system’s goal, such as maximizing productivity or profit, or minimizing cost, and others. The negotiation model was adopted to perform partial process optimization by reassigning tasks and resources between the fractals, based on the goal of coping with the changes in the system’s condition. The sustainability assessment method was designed to simultaneously evaluate sustainability with respect to the system’s goals. The proposed architecture of SSrMS with goal decision model, negotiation model, and sustainability assessment method has the features of self-optimization, self-organization, and self-reconfiguration in order to achieve fully autonomous operations for the manufacturing system. The proposed architecture including three methods are expected to provide a fundamental study of the autonomous operations. The main findings of in this study is the development of a new architecture for fully autonomous operations of the smart manufacturing system with reconfiguration methods of goal-oriented manufacturing processes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3