Hydrodynamic Fingering Induced by Gel Film Formation in Miscible Fluid Systems: An Experimental and Mathematical Study

Author:

Nasir MuhammadORCID,Yamaguchi Ryuhei,She Yun,Patmonoaji AnindityoORCID,Mahardika Mohammad Azis,Wang Weicen,Li Zijing,Matsushita Shintaro,Suekane TetsuyaORCID

Abstract

Hydrodynamic fingering induced by gel formation shares common features with growing biofilms, bacterial colonies, and the instability of a confined chemical garden. Fluid displacement with gel formation is also essential in various engineering applications, including CO2 leakage remediation from storage reservoirs and enhanced oil recovery. We conducted Hele-Shaw cell displacement experiments for a miscible fluid system using skim milk and aqueous citric acid solution. This study aimed to investigate the effects of gel film formation on the fingering instability of a miscible fluid system and develop a mathematical model of the sequential growth of gel film formation at the fingertip. We found that the gel film formation thickens with time, resulting in instability at the interface. A distinctive fingering pattern, resembling tentacles, appears where miscibility is suppressed, and the growth of the finger is localized at the fingertip. The finger width remains constant with increasing flow rate, whereas the number of fingers increases linearly before the fingers merge. The gap width significantly limits the finger width. Finally, a mathematical model of sequential film thickness growth for a bubble-like fingertip structure was developed. This model is based upon the interplay between the diffusion of citric acid through the existing gel film formation and elongation of the fingertip. The model provides an understanding of the fundamental mechanism of the growth of the bubble-like fingertip.

Funder

Japan Society for the Promotion of Science

InfoSyEnergy Program Tokyo Institute of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3