An Experimental and Theoretical Comparison of 3D Models for Ultrasonic Non-Destructive Testing of Cracks: Part I, Embedded Cracks

Author:

Darmon MichelORCID,Toullelan Gwenael,Dorval Vincent

Abstract

Ultrasonic Non-Destructive Testing (NDT) methods are broadly used for detection and characterization/imaging of cracks. Simulation is of great interest for designing such NDT methods. To model the ultrasonic 3D response of a crack, ultrasonic high frequency asymptotic (semi-analytical) models (such as the Physical Theory of Diffraction—PTD) are known to provide accurate predictions for most classical NDT configurations, and 3D numerical models have also emerged more recently. The aim of this paper is to carry out for the first time an experimental and theoretical comparison of 3D models for ultrasonic NDT of embedded cracks in 3D configurations. Semi-analytical models and a hybrid 3D FEM strategy—combining high-order spectral Finite Elements Method (FEM) for flaw scattering and an asymptotic ray model for beam propagation—have been compared. Both numerical validations and comparisons between simulation and experiments prove the effectiveness of PTD in numerous configurations but validate and demonstrate the improvement provided by the 3D hybrid code, notably for small flaws compared to the wavelength and for shear waves.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. Ultrasonic Nondestructive Evaluation Systems: Models and Measurements;Schmerr,2007

2. Main Features of a Complete Ultrasonic Measurement Model: Formal Aspects of Modeling of Both Transducers Radiation and Ultrasonic Flaws Responses

3. Ultrasonic Scattering from Smooth Flat Cracks: An Elastodynamic Kirchhoff Diffraction Theory;Chapman,1982

4. Rays Methods for Waves in Elastic Solids;Achenbach,1982

5. Modelling of Scattering of Ultrasounds by Flaws for NDT;Darmon,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3