Abstract
Knowledge about crop type distribution is valuable information for effective management of agricultural productivity, food security estimation, and natural resources protection. Algorithms for automatic crop type detection have great potential to positively influence these aspects as well as speed up the process of crop type mapping in larger areas. In the presented study, we used 14 Sentinel-2 images to calculate 12 widely used spectral vegetation indices. Further, to evaluate the effect of reduced dimensionality on the accuracy of crop type mapping, we utilized principal component analysis (PCA). For this purpose, random forest (RF)-supervised classifications were tested for each index separately, as well as for the combinations of various indices and the four initial PCA components. Additionally, for each RF classification feature importance was assessed, which enabled identification of the most relevant period of the year for the differentiation of crop types. We used 34.6% of the ground truth field data to train the classifier and calculate various accuracy measures such as the overall accuracy (OA) or Kappa index. The study showed a high effectiveness of the Modified Chlorophyll Absorption in Reflectance Index (MCARI) (OA = 86%, Kappa = 0.81), Normalized Difference Index 45 (NDI45) (OA = 85%, Kappa = 0.81), and Weighted Difference Vegetation Index (WDVI) (OA = 85%, Kappa = 0.80) in crop type mapping. However, utilization of all of them together did not increase the classification accuracy (OA = 78%, Kappa = 0.72). Additionally, the application of the initial three components of PCA allowed us to achieve an OA of 78% and Kappa of 0.72, which was unfortunately lower than the single-index classification (e.g., based on only NDVI45). This shows that dimensionality reductions did not increase the classification accuracy. Moreover, feature importance from RF indicated that images captured from June and July are the most relevant for differentiating crop types. This shows that this period of the year is crucial to effectively differentiate crop types and should be undeniably used in crop type mapping.
Funder
This research was funded by the Ministry of Education and Science,
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献