Nailfold Microhemorrhage Segmentation with Modified U-Shape Convolutional Neural Network

Author:

Liu Ruiqi,Tian Jing,Li Yuemei,Chen NaORCID,Yan Jianshe,Li Taihao,Liu Shupeng

Abstract

Nailfold capillaroscopy is a reliable way to detect and analyze microvascular abnormalities. It is safe, simple, noninvasive, and inexpensive. Among all the capillaroscopic abnormalities, nailfold microhemorrhages are closely associated with early vascular damages and might be present in numerous diseases such as glaucoma, diabetes mellitus, and systemic sclerosis. Segmentation of nailfold microhemorrhages provides valuable pathological information that may lead to further investigations. A novel deep learning architecture named DAFM-Net is proposed for the accurate segmentation in this study. The network mainly consists of U-shape backbone, dual attention fusion module, and group normalization layer. The U-shape backbone generates rich hierarchical representations while the dual attention fusion module utilizes the captured features for fine adjustment. Group normalization is introduced as an effective normalization method to effectively improve the convergence ability of our deep neural network. The effectiveness of the proposed model is validated through ablation studies and segmentation experiments; the proposed method DAFM-Net achieves competitive performance for nailfold microhemorrhage segmentation with an IOU score of 78.03% and Dice score of 87.34% compared to the ground truth.

Funder

the National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3