Abstract
Nailfold capillaroscopy is a reliable way to detect and analyze microvascular abnormalities. It is safe, simple, noninvasive, and inexpensive. Among all the capillaroscopic abnormalities, nailfold microhemorrhages are closely associated with early vascular damages and might be present in numerous diseases such as glaucoma, diabetes mellitus, and systemic sclerosis. Segmentation of nailfold microhemorrhages provides valuable pathological information that may lead to further investigations. A novel deep learning architecture named DAFM-Net is proposed for the accurate segmentation in this study. The network mainly consists of U-shape backbone, dual attention fusion module, and group normalization layer. The U-shape backbone generates rich hierarchical representations while the dual attention fusion module utilizes the captured features for fine adjustment. Group normalization is introduced as an effective normalization method to effectively improve the convergence ability of our deep neural network. The effectiveness of the proposed model is validated through ablation studies and segmentation experiments; the proposed method DAFM-Net achieves competitive performance for nailfold microhemorrhage segmentation with an IOU score of 78.03% and Dice score of 87.34% compared to the ground truth.
Funder
the National Nature Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献