Prediction and Optimization of the Design and Process Parameters of a Hybrid DED Product Using Artificial Intelligence

Author:

Çallı MetinORCID,Albak Emre İsaORCID,Öztürk Ferruh

Abstract

Directed energy deposition (DED) is an additive manufacturing process used in manufacturing free form geometries, repair applications, coating and surface modification, and fabrication of functionally graded materials. It is a process in which focused thermal energy is used to fuse materials by melting. Thermal effects can cause distortions and defects on the parts during the DED process, therefore they should be evaluated and taken into account during the manufacturing of products. Melting pool control and DED bead geometries should be defined properly as well. In this work, an Artificial Neural Network model has been applied considering the DED process parameters in order to predict the geometrical patterns and create a local reinforced product as a hybrid manufacturing technology. Although lots of studies are available on topology optimization for manufacturing methods such as casting, extrusion, and powder bed fusion, topology optimization for the DED process is not widely taken into consideration to predict the design geometrical patterns. DOE RSM and ANN approaches were applied in this study to predict convenient dimensions, topology based geometrical patterns of local stiffeners and heat source power optimizing the energy, total mass, and peak force results of the hybrid part. A single bead track deposition is simulated in terms of validation of the numerical heat source model, and cross-sections of the beads are analysed. A cross-member structure is manufactured using the DED device and the structure is correlated under the three point bending physical conditions on test bench. It has been investigated that locally reinforced cross beam has much more energy absorption and peak force values than plain model. The results showed that the proposed NN-GA is a promising approach to generate the topology based geometrical patterns and process parameters which can be used to create a local reinforced product as hybrid manufacturing technologies.

Funder

Tubitak and Coşkunöz Holding 2244 Industrial Doctorate Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. A Practical Guide to Design for Additive Manufacturing;Diegel,2020

2. Additive manufacturing processes and equipment

3. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry;Milewski,2017

4. ISO/ASTM 52900; Additive Manufacturing—General Principles—Terminologyhttps://www.iso.org/obp/ui/#iso:std:iso-astm:52900:dis:ed-2:v1:en

5. Current research and industrial application of laser powder directed energy deposition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3