Abstract
A quantum cascade laser-based sensing technique is presented which allows for in situ high-precision temperature and/or CO2 concentration measurements of gases in the room temperature regime with sampling rates up to about 40 kHz. The method is based on Boltzmann-like thermally populated fundamental and hot-band rovibrational transitions of CO2 with opposite temperature dependence. Single absorption spectra at about 2350 to 2352 cm−1 are recorded by a nanosecond frequency down chirped IR pulse of a pulsed distributed feedback quantum cascade laser (intrapulse mode). The statistical uncertainty (1σ) in the temperature measurement within one laser pulse is about 1 K and can be further reduced down to about 0.1 K by time averaging over 100 ms. Online temperature and CO2 concentration measurements on a breath simulator controlled gas flow were performed to demonstrate response-time and sensitivity for an application-driven test system.
Funder
Central Innovation Programme of Federal Ministry for Economic Affairs and Energy, Germany
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献