Traffic State Prediction Using One-Dimensional Convolution Neural Networks and Long Short-Term Memory

Author:

Reza SelimORCID,Ferreira Marta CamposORCID,Machado José J. M.ORCID,Tavares João Manuel R. S.ORCID

Abstract

Traffic prediction is a vitally important keystone of an intelligent transportation system (ITS). It aims to improve travel route selection, reduce overall carbon emissions, mitigate congestion, and enhance safety. However, efficiently modelling traffic flow is challenging due to its dynamic and non-linear behaviour. With the availability of a vast number of data samples, deep neural network-based models are best suited to solve these challenges. However, conventional network-based models lack robustness and accuracy because of their incapability to capture traffic’s spatial and temporal correlations. Besides, they usually require data from adjacent roads to achieve accurate predictions. Hence, this article presents a one-dimensional (1D) convolution neural network (CNN) and long short-term memory (LSTM)-based traffic state prediction model, which was evaluated using the Zenodo and PeMS datasets. The model used three stacked layers of 1D CNN, and LSTM with a logarithmic hyperbolic cosine loss function. The 1D CNN layers extract the features from the data, and the goodness of the LSTM is used to remember the past events to leverage them for the learnt features for traffic state prediction. A comparative performance analysis of the proposed model against support vector regression, standard LSTM, gated recurrent units (GRUs), and CNN and GRU-based models under the same conditions is also presented. The results demonstrate very encouraging performance of the proposed model, improving the mean absolute error, root mean squared error, mean percentage absolute error, and coefficient of determination scores by a mean of 16.97%, 52.1%, 54.15%, and 7.87%, respectively, relative to the baselines under comparison.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. The Geography of Transport Systems;Rodrigue,2017

2. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting;Yu;arXiv,2017

3. Short term traffic flow prediction of expressway service area based on STL-OMS

4. Deep Temporal Convolutional Networks for Short-Term Traffic Flow Forecasting

5. Multi-Lane Short-Term Traffic Forecasting With Convolutional LSTM Network

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3