Author:
Dai Huatong,Chen Pengzhan,Yang Hui
Abstract
Due to the advantages of their drive configuration form, skid-steering vehicles with independent wheel drive systems are widely used in various special applications. However, obtaining a reasonable distribution of the driving torques for the coordinated control of independent driving wheels is a challenging problem. In this paper, we propose a torque distribution strategy based on the Knowledge-Assisted Deep Deterministic Policy Gradient (KA-DDPG) algorithm, in order to minimize the desired value tracking error as well as achieve the longitudinal speed and yaw rate tracking control of skid-steering vehicles. The KA-DDPG algorithm combines knowledge-assisted learning methods with the DDPG algorithm, within the framework of knowledge-assisted reinforcement learning. To accelerate the learning process of KA-DDPG, two assisted learning methods are proposed: a criteria action method and a guiding reward method. The simulation results obtained, considering different scenarios, demonstrate that the KA-DDPG-based torque distribution strategy allows a skid-steering vehicle to achieve high performance, in tracking the desired value. In addition, further simulation results, also, demonstrate the contributions of knowledge-assisted learning methods to the training process of KA-DDPG: the criteria action method speeds up the learning speed by reducing the agent’s random action selection, while the guiding reward method achieves the same result by sharpening the reward function.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献