Abstract
Global Navigation Satellite System Real-time Kinematic (GNSS-RTK) is an indispensable source for the absolute positioning of autonomous systems. Unfortunately, the performance of the GNSS-RTK is significantly degraded in urban canyons, due to the notorious multipath and Non-Line-of-Sight (NLOS). On the contrary, LiDAR/inertial odometry (LIO) can provide locally accurate pose estimation in structured urban scenarios but is subjected to drift over time. Considering their complementarities, GNSS-RTK, adaptively integrated with LIO was proposed in this paper, aiming to realize continuous and accurate global positioning for autonomous systems in urban scenarios. As one of the main contributions, this paper proposes to identify the quality of the GNSS-RTK solution based on the point cloud map incrementally generated by LIO. A smaller mean elevation angle mask of the surrounding point cloud indicates a relatively open area thus the correspondent GNSS-RTK would be reliable. Global factor graph optimization is performed to fuse reliable GNSS-RTK and LIO. Evaluations are performed on datasets collected in typical urban canyons of Hong Kong. With the help of the proposed GNSS-RTK selection strategy, the performance of the GNSS-RTK/LIO integration was significantly improved with the absolute translation error reduced by more than 50%, compared with the conventional integration method where all the GNSS-RTK solutions are used.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献