GNSS-RTK Adaptively Integrated with LiDAR/IMU Odometry for Continuously Global Positioning in Urban Canyons

Author:

Zhang Jiachen,Wen Weisong,Huang FengORCID,Wang Yongliang,Chen Xiaodong,Hsu Li-TaORCID

Abstract

Global Navigation Satellite System Real-time Kinematic (GNSS-RTK) is an indispensable source for the absolute positioning of autonomous systems. Unfortunately, the performance of the GNSS-RTK is significantly degraded in urban canyons, due to the notorious multipath and Non-Line-of-Sight (NLOS). On the contrary, LiDAR/inertial odometry (LIO) can provide locally accurate pose estimation in structured urban scenarios but is subjected to drift over time. Considering their complementarities, GNSS-RTK, adaptively integrated with LIO was proposed in this paper, aiming to realize continuous and accurate global positioning for autonomous systems in urban scenarios. As one of the main contributions, this paper proposes to identify the quality of the GNSS-RTK solution based on the point cloud map incrementally generated by LIO. A smaller mean elevation angle mask of the surrounding point cloud indicates a relatively open area thus the correspondent GNSS-RTK would be reliable. Global factor graph optimization is performed to fuse reliable GNSS-RTK and LIO. Evaluations are performed on datasets collected in typical urban canyons of Hong Kong. With the help of the proposed GNSS-RTK selection strategy, the performance of the GNSS-RTK/LIO integration was significantly improved with the absolute translation error reduced by more than 50%, compared with the conventional integration method where all the GNSS-RTK solutions are used.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3