Aggression Detection in Social Media from Textual Data Using Deep Learning Models

Author:

Khan Umair,Khan Salabat,Rizwan AtifORCID,Atteia GhadaORCID,Jamjoom Mona M.,Samee Nagwan AbdelORCID

Abstract

It is an undeniable fact that people excessively rely on social media for effective communication. However, there is no appropriate barrier as to who becomes a part of the communication. Therefore, unknown people ruin the fundamental purpose of effective communication with irrelevant—and sometimes aggressive—messages. As its popularity increases, its impact on society also increases, from primarily being positive to negative. Cyber aggression is a negative impact; it is defined as the willful use of information technology to harm, threaten, slander, defame, or harass another person. With increasing volumes of cyber-aggressive messages, tweets, and retweets, there is a rising demand for automated filters to identify and remove these unwanted messages. However, most existing methods only consider NLP-based feature extractors, e.g., TF-IDF, Word2Vec, with a lack of consideration for emotional features, which makes these less effective for cyber aggression detection. In this work, we extracted eight novel emotional features and used a newly designed deep neural network with only three numbers of layers to identify aggressive statements. The proposed DNN model was tested on the Cyber-Troll dataset. The combination of word embedding and eight different emotional features were fed into the DNN for significant improvement in recognition while keeping the DNN design simple and computationally less demanding. When compared with the state-of-the-art models, our proposed model achieves an F1 score of 97%, surpassing the competitors by a significant margin.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference57 articles.

1. Bystander reactions to cyberbullying and cyberaggression: individual, contextual, and social factors

2. Evaluating Machine Learning Techniques for Detecting Offensive and Hate Speech in South African Tweets

3. Visualizing Eight Years of Twitter’s Evolution: 2012–2019https://blog.gdeltproject.org/visualizing-eight-years-of-twitters-evolution2012-2019/

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3