Spatiotemporal Urea Distribution, Sources, and Indication of DON Bioavailability in Zhanjiang Bay, China

Author:

Zhang Peng,Peng Cong-Hui,Zhang Ji-Biao,Zou Zhan-Bin,Shi Yu-Zhen,Zhao Li-Rong,Zhao Hui

Abstract

In marine environments, urea is an important component of the biogeochemical cycle of nitrogen. The autochthonous and allochthonous sources (rivers, aquaculture, waste water input, etc.) of urea play a key role in urea cycles in adjacent coastal waters. Because urea is a specific marker to trace the sewage fluxes in coastal waters, we investigated urea associated with terrestrial source input and coastal water in Zhanjiang Bay (ZJB) during the time from November 2018 to July 2019, and the spatiotemporal urea distribution and the bioavailability of dissolved organic nitrogen (DON) based on urea concentration in the ZJB were explored. The results showed that the urea enrichment in coastal water was mainly due to discharge from urban sewage systems, rivers, and coastal aquaculture. The concentration of urea ranged from 1.14 to 5.53 μmol·L−1, and its mean value was 3.13 ± 1.02 μmol·L−1 in the ZJB. The urea concentration showed a significantly different seasonal variation in the ZJB (p < 0.05), and the highest and lowest concentrations were found in November 2018 and April 2019, respectively. Its high value appeared in the north and northeast of the ZJB, which were polluted by coastal aquaculture and agriculture fertilizer utilization. The range of urea concentration of terrestrial source inputs in the ZJB was 1.31–10.29 μmol·L−1, and the average urea concentration reached 3.22 ± 0.82 μmol·L−1. Moreover, the total urea flux surrounding the ZJB was 2905 tons·year−1. The seasonal terrestrial source of urea flux contributions had significant seasonal variation in wet, normal, and dry seasons (p < 0.05). The ZJB was subjected to a large flux of urea by estuaries and sewage outlet discharges. The seasonal urea concentration in all stations (>1 μmol·L−1) indicated that urea in the ZJB may have a bioavailable DON source. As a bioavailable nitrogen source, the ability of terrestrial source-derived urea to increase eutrophication should not be ignored in ZJB.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3