Stress Evaluation of Welded Joints with Metal Magnetic Memory Testing Based on Tension–Compression Fatigue Test

Author:

Wang Huipeng,Xu Zhiwei,Cai Dongwei,Dong Lihong,Ma Guozheng,Wang Haidou,Liu Bin

Abstract

Metal magnetic memory testing (MMMT) is an effective nondestructive technique for fatigue damage monitoring of weldments because of its capacity for stress evaluation. An experimental investigation of the effect of the applied fatigue stress on MMMT signals, including the tangential component Bx and the normal component Bz, during tension–compression fatigue tests in welded joints was carried out systematically. The Bx and Bz signals at different fatigue cycles and fatigue stresses were collected and analyzed, and the results showed that there was a peak of Bx and abnormal peaks of Bz that existed at the welded joint before loading. After loading, the peak of Bx and the abnormal peaks of Bz reversed, and the Bx signals moved upward and the Bz signals rotated anticlockwise dramatically in the first few fatigue cycles. After the fatigue cycle number was larger than 1000, Bx and Bz were stable, with very little fluctuation. In addition, the characteristics of Bx signals, the mean value, and the peak value of the average of Bx had an extremely significant linear relationship with the applied fatigue stress during the stable stage of the fatigue test, which indicates that MMMT is a feasible method for fatigue stress evaluation and even residual fatigue life estimation for weldments in service.

Funder

National Natural Science Foundation of China

National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3