Nanofunctionalization of Additively Manufactured Titanium Substrates for Surface-Enhanced Raman Spectroscopy Measurements

Author:

Pisarek MarcinORCID,Ambroziak RobertORCID,Hołdyński Marcin,Roguska Agata,Majchrowicz Anna,Wysocki BartłomiejORCID,Kudelski AndrzejORCID

Abstract

Powder bed fusion using a laser beam (PBF-LB) is a commonly used additive manufacturing (3D printing) process for the fabrication of various parts from pure metals and their alloys. This work shows for the first time the possibility of using PBF-LB technology for the production of 3D titanium substrates (Ti 3D) for surface-enhanced Raman scattering (SERS) measurements. Thanks to the specific development of the 3D titanium surface and its nanoscale modification by the formation of TiO2 nanotubes with a diameter of ~80 nm by the anodic oxidation process, very efficient SERS substrates were obtained after deposition of silver nanoparticles (0.02 mg/cm2, magnetron sputtering). The average SERS enhancement factor equal to 1.26 × 106 was determined for pyridine (0.05 M + 0.1 M KCl), as a model adsorbate. The estimated enhancement factor is comparable with the data in the literature, and the substrate produced in this way is characterized by the high stability and repeatability of SERS measurements. The combination of the use of a printed metal substrate with nanofunctionalization opens a new path in the design of SERS substrates for applications in analytical chemistry. Methods such as SEM scanning microscopy, photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD) were used to determine the morphology, structure and chemical composition of the fabricated materials.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3