Prediction of Hardenability Curves for Non-Boron Steels via a Combined Machine Learning Model

Author:

Geng Xiaoxiao,Wang Shuize,Ullah AsadORCID,Wu GuilinORCID,Wang Hao

Abstract

Hardenability is one of the most basic criteria influencing the formulation of the heat treatment process and steel selection. Therefore, it is of great engineering value to calculate the hardenability curves rapidly and accurately without resorting to any laborious and costly experiments. However, generating a high-precision computational model for steels with different hardenability remains a challenge. In this study, a combined machine learning (CML) model including k-nearest neighbor and random forest is established to predict the hardenability curves of non-boron steels solely on the basis of chemical compositions: (i) random forest is first applied to classify steel into low- and high-hardenability steel; (ii) k-nearest neighbor and random forest models are then developed to predict the hardenability of low- and high-hardenability steel. Model validation is carried out by calculating and comparing the hardenability curves of five steels using different models. The results reveal that the CML model works well for its distinguished prediction performance with precise classification accuracy (100%), high correlation coefficient (≥0.981), and low mean absolute errors (≤3.6 HRC) and root-mean-square errors (≤3.9 HRC); it performs better than JMatPro and empirical formulas including the ideal critical diameter method and modified nonlinear equation. Therefore, this study demonstrates that the CML model combining material informatics and data-driven machine learning can rapidly and efficiently predict the hardenability curves of non-boron steel, with high prediction accuracy and a wide application range. It can guide process design and machine part selection, reducing the cost of trial and error and accelerating the development of new materials.

Funder

Start typing the name of your funder then select from the list of results.

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3