Effect of Multidirectional Isothermal Forging on Microstructure and Mechanical Properties in Ti-6Al-4V Alloy

Author:

Xu Zhichao,Yang Wenju,Fan Jianfeng,Wu Tao,Gao ZengORCID

Abstract

In the present work, the microstructure and mechanical properties of Ti-6Al-4V alloy during multidirectional isothermal forging (MDIF) were systematically investigated. The evolution of the microstructure and texture of Ti-6Al-4V alloy during MDIF was studied using TEM and electron backscattered diffraction (EBSD). The experiment results showed that the grain size decreased with the increase in cumulative strain, especially in the easy deformation zone. After four deformation cycles, a homogeneous equiaxed grained microstructure with an average grain size of 0.14 μm was achieved. The texture changes of the alloy were studied in detail. After one cycle of MDIF, the texture was mainly composed of (0002) [01 10], and the Euler angles were (8°, 30°, 30°). The density of texture decreased with the increase in loading cycle, but the dispersion of texture increased. After four cycles of MDIF, the non-basal texture (1010) <1102> texture was observed, and the Euler angles were (82°, 33°, 0°). The highest achieved mechanical properties for Ti-6Al-4V alloy in the MDIF condition were a yield strength 900 MPa, ultimate tensile strength of 921 MPa, and an elongation of 12.1% at room temperature. The increase in MDIF cycles improved the hardness of the alloy. The significant improvement in mechanical properties was attributed to the ultrafine-grained microstructure.

Funder

National Natural Science Foundation of China

Youth fund of Henan Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3