Abstract
Achievements of good chemical and ecological status of groundwater (GW) and surface water (SW) bodies are currently challenged mainly due to poor identification and quantification of pollution sources. A high spatio-temporal hydrological and water quality monitoring of SW and GW bodies is the basis for a reliable assessment of water quality in a catchment. However, high spatio-temporal hydrological and water quality monitoring is expensive, laborious, and hard to accomplish. This study uses spatio-temporally low resolved monitored water quality and river discharge data in combination with integrated hydrological modelling to estimate the governing pollution pathways and identify potential transformation processes. A key task at the regarded lowland river Augraben is (i) to understand the SW and GW interactions by estimating representative GW zones (GWZ) based on simulated GW flow directions and GW quality monitoring stations, (ii) to quantify GW flows to the Augraben River and its tributaries, and (iii) to simulate SW discharges at ungauged locations. Based on simulated GW flows and SW discharges, NO3-N, NO2-N, NH4-N, and P loads are calculated from each defined SW tributary outlet (SWTO) and respective GWZ by using low-frequency monitored SW and GW quality data. The magnitudes of NO3-N transformations and plant uptake rates are accessed by estimating a NO3-N balance at the catchment outlet. Based on sensitivity analysis results, Manning’s roughness, saturated hydraulic conductivity, and boundary conditions are mainly used for calibration. The water balance results show that 60–65% of total precipitation is lost via evapotranspiration (ET). A total of 85–95% of SW discharge in Augraben River and its tributaries is fed by GW via base flow. SW NO3-N loads are mainly dependent on GW flows and GW quality. Estimated SW NO3-N loads at SWTO_Ivenack and SWTO_Lindenberg show that these tributaries are heavily polluted and contribute mainly to the total SW NO3-N loads at Augraben River catchment outlet (SWO_Gehmkow). SWTO_Hasseldorf contributes least to the total SW NO3-N loads. SW quality of Augraben River catchment lies, on average, in the category of heavily polluted river with a maximum NO3-N load of 650 kg/d in 2017. Estimated GW loads in GWZ_Ivenack have contributed approximately 96% of the total GW loads and require maximum water quality improvement efforts to reduce high NO3-N levels. By focusing on the impacts of NO3-N reduction measures and best agricultural practices, further studies can enhance the better agricultural and water quality management in the study area.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献