A Multi-Item Replenishment Problem with Carbon Cap-and-Trade under Uncertainty

Author:

Noh JiseongORCID,Kim Jong SooORCID,Hwang Seung-June

Abstract

Recently, as global warming has become a major issue, many companies have increased their efforts to control carbon emissions in green supply chain management (GSCM) activities. This paper deals with the multi-item replenishment problem in GSCM, from both economic and environmental perspectives. A single buyer orders multiple items from a single supplier, and simultaneously considers carbon cap-and-trade under limited storage capacity and limited budget. In this case we can apply a can-order policy, which is a well-known multi-item replenishment policy. Depending on the market characteristics, we develop two mixed-integer programming (MIP) models based on the can-order policy. The deterministic model considers a monopoly market in which a company fully knows the market information, such that both storage capacity and budget are already determined. In contrast, the fuzzy model considers a competitive or a new market, in which case both of those resources are considered as fuzzy numbers. We performed numerical experiments to validate and assess the efficiency of the developed models. The results of the experiments showed that the proposed can-order policy performed far better than the traditional can-order policy in GSCM. In addition, we verified that the fuzzy model can cope with uncertainties better than the deterministic model in terms of total expected costs.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3