Abstract
This study proposed the prepacked aggregates fiber-reinforced concrete (PAFRC), which is a newly developed concrete, with a unique combination of coarse aggregate and short polypropylene (PP) fiber that is premixed and placed in the formworks. This study aims to investigate the potential use of waste polypropylene fibers and palm oil fuel ash (POFA) in the production of PAFRC to enhance the strength and deformation properties. The compressive strength, impact-resistant, drying shrinkage, and microstructural analysis of PAFRC were investigated experimentally. Six mixes comprising fiber volume fractions from 0–1.25% with a length of 30 mm were cast by gravity technique. Another six mixtures with the same fiber volume fractions were cast using a pump to inject the grout into the formwork. The experimental outcomes exposed that with the addition of PP carpet fiber, the compressive strength of PAFRC decreased. Nevertheless, PAFRC mixes shown a remarkable improvement in the tensile strength. The combination of POFA and PP fibers in PAFRC specimens led to higher impact strength and increasing the ductility of concrete. In addition, the drying shrinkage of PAFRC reduced significantly with the addition of waste PP fibers. It can be concluded that due to the adequate strength and deformation properties, PAFRC is the potential to be used as innovative fiber reinforced concrete in several applications.
Funder
Deanship of Scientific Research, King Saud University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献