Abstract
The Biot-Granier (Gbt) is a new thermal dissipation-based sap flow measurement methodology, comprising sensors, data management and automatic data processing. It relies on the conventional Granier (Gcv) methodology upgraded with a modified Granier sensor set, as well as on an algorithm to measure the absolute temperatures in the two observation points and perform the Biot number approach. The work described herein addresses the construction details of the Gbt sensors and the characterization of the overall performance of the Gbt method after comparison with a commercial sap flow sensor and independent data (i.e., volumetric water content, vapor pressure deficit and eddy covariance technique). Its performance was evaluated in three trials: potted olive trees in a greenhouse and two vineyards. The trial with olive trees in a greenhouse showed that the transpiration measures provided by the Gbt sensors showed better agreement with the gravimetric approach, compared to those provided by the Gcv sensors. These tended to overestimate sap flow rates as much as 4 times, while Gbt sensors overestimated gravimetric values 1.5 times. The adjustments based on the Biot equations obtained with Gbt sensors contribute to reduce the overestimates yielded by the conventional approach. On the other hand, the heating capacity of the Gbt sensor provided a minimum of around 7 °C and maximum about 9 °C, contrasting with a minimum around 6 °C and a maximum of 12 °C given by the Gcv sensors. The positioning of the temperature sensor on the tip of the sap flow needle proposed in the Gbt sensors, closer to the sap measurement spot, allow to capture sap induced temperature variations more accurately. This explains the higher resolution and sensitivity of the Gbt sensor. Overall, the alternative Biot approach showed a significant improvement in sap flow estimations, contributing to adjust the Granier sap flow index, a vulnerability of that methodology.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献