Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis

Author:

Liu Jiang,Hagan Daniel Fiifi TawiaORCID,Liu YiORCID

Abstract

Land surface temperature (LST) plays a critical role in the water cycle and energy balance at global and regional scales. Large-scale LST estimates can be obtained from satellite observations and reanalysis data. In this study, we first investigate the long-term changes of LST during 2003–2017 on a per-pixel basis using three different datasets derived from (i) the Atmospheric Infrared Sounder (AIRS) onboard Aqua satellite, (ii) the Moderate Resolution Imaging Spectroradiometer (MODIS) also aboard Aqua, and (iii) the recently released ERA5-Land reanalysis data. It was found that the spatio-temporal patterns of these data agree very well. All three products globally showed an uptrend in the annual average LST during 2003–2017 but with considerable spatial variations. The strongest increase was found over the region north of 45° N, particularly over Asian Russia, whereas a slight decrease was observed over Australia. The regression analysis indicated that precipitation (P), incoming surface solar radiation (SW↓), and incoming surface longwave radiation (LW↓) can together explain the inter-annual LST variations over most regions, except over tropical forests, where the inter-annual LST variation is low. Spatially, the LST changes during 2003–2017 over the region north of 45° N were mainly influenced by LW↓, while P and SW↓ played a more important role over other regions. A detailed look at Asian Russia and the Amazon rainforest at a monthly time scale showed that warming in Asian Russia is dominated by LST increases in February–April, which are closely related with the simultaneously increasing LW↓ and clouds. Over the southern Amazon, the most apparent LST increase is found in the dry season (August–September), primarily affected by decreasing P. In addition, increasing SW↓ associated with decreasing atmospheric aerosols was another factor found to cause LST increases. This study shows a high level of consistency among LST trends derived from satellite and reanalysis products, thus providing more robust characteristics of the spatio-temporal LST changes during 2003–2017. Furthermore, the major climatic drivers of LST changes during 2003–2017 were identified over different regions, which might help us predict the LST in response to changing climate in the future.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3