Moving to Automated Tree Inventory: Comparison of UAS-Derived Lidar and Photogrammetric Data with Manual Ground Estimates

Author:

Ramalho de Oliveira Luiz FelipeORCID,Lassiter H. AndrewORCID,Wilkinson Ben,Whitley Travis,Ifju Peter,Logan Stephen R.,Peter Gary F.,Vogel Jason G.,Martin Timothy A.ORCID

Abstract

Unmanned aircraft systems (UAS) have advanced rapidly enabling low-cost capture of high-resolution images with cameras, from which three-dimensional photogrammetric point clouds can be derived. More recently UAS equipped with laser scanners, or lidar, have been employed to create similar 3D datasets. While airborne lidar (originally from conventional aircraft) has been used effectively in forest systems for many years, the ability to obtain important tree features such as height, diameter at breast height, and crown dimensions is now becoming feasible for individual trees at reasonable costs thanks to UAS lidar. Getting to individual tree resolution is crucial for detailed phenotyping and genetic analyses. This study evaluates the quality of three three-dimensional datasets from three sensors—two cameras of different quality and one lidar sensor—collected over a managed, closed-canopy pine stand with different planting densities. For reference, a ground-based timber cruise of the same pine stand is also collected. This study then conducted three straightforward experiments to determine the quality of the three sensors’ datasets for use in automated forest inventory: manual mensuration of the point clouds to (1) detect trees and (2) measure tree heights, and (3) automated individual tree detection. The results demonstrate that, while both photogrammetric and lidar data are well-suited for single-tree forest inventory, the photogrammetric data from the higher-quality camera is sufficient for individual tree detection and height determination, but that lidar data is best. The automated tree detection algorithm used in the study performed well with the lidar data, detecting 98% of the 2199 trees in the pine stand, but fell short of manual mensuration within the lidar point cloud, where 100% of the trees were detected. The manually-mensurated heights in the lidar dataset correlated with field measurements at r = 0.95 with a bias of −0.25 m, where the photogrammetric datasets were again less accurate and precise.

Funder

U.S. Geological Survey

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3