Abstract
Image enhancement (IE) technology can help enhance the brightness of remote-sensing images to obtain better interpretation and visualization effects. Convolutional neural networks (CNN), such as the Low-light CNN (LLCNN) and Super-resolution CNN (SRCNN), have achieved great success in image enhancement, image super resolution, and other image-processing applications. Therefore, we adopt CNN to propose a new neural network architecture with end-to-end strategy for low-light remote-sensing IE, named remote-sensing CNN (RSCNN). In RSCNN, an upsampling operator is adopted to help learn more multi-scaled features. With respect to the lack of labeled training data in remote-sensing image datasets for IE, we use real natural image patches to train firstly and then perform fine-tuning operations with simulated remote-sensing image pairs. Reasonably designed experiments are carried out, and the results quantitatively show the superiority of RSCNN in terms of structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) over conventional techniques for low-light remote-sensing IE. Furthermore, the results of our method have obvious qualitative advantages in denoising and maintaining the authenticity of colors and textures.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献