A Review of Remote Sensing Challenges for Food Security with Respect to Salinity and Drought Threats

Author:

Wen WenORCID,Timmermans Joris,Chen Qi,van Bodegom Peter M.

Abstract

Drought and salinity stress are considered to be the two main factors limiting crop productivity. With climate change, these stresses are projected to increase, further exacerbating the risks to global food security. Consequently, to tackle this problem, better agricultural management is required on the basis of improved drought and salinity stress monitoring capabilities. Remote sensing makes it possible to monitor crop health at various spatiotemporal scales and extents. However, remote sensing has not yet been used to monitor both drought and salinity stresses simultaneously. The aim of this paper is to review the current ability of remote sensing to detect the impact of these stresses on vegetation indices (VIs) and crop trait responses. We found that VIs are insufficiently accurate (0.02 ≤ R2 ≤ 0.80) to characterize the crop health under drought and salinity stress. In contrast, we found that plant functional traits have a high potential to monitor the impacts of such stresses on crop health, as they are more in line with the vegetation processes. However, we also found that further investigations are needed to achieve this potential. Specifically, we found that the spectral signals concerning drought and salinity stress were inconsistent for the various crop traits. This inconsistency was present (a) between studies utilizing similar crops and (b) between investigations studying different crops. Moreover, the response signals for joint drought and salinity stress overlapped spectrally, thereby significantly limiting the application of remote sensing to monitor these separately. Therefore, to consistently monitor crop responses to drought and salinity, we need to resolve the current indeterminacy of the relationships between crop traits and spectrum and evaluate multiple traits simultaneously. Using radiative transfer models (RTMs) and multi-sensor frameworks allow monitoring multiple crop traits and may constitute a way forward toward evaluating drought and salinity impacts.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference75 articles.

1. The State of the World’s Land and Water Resources for Food and Agriculture-Managing Systems at Risk,2011

2. The State of Food Security and Nutrition in the World 2020,2020

3. Classification of yield affecting biotic and abiotic paddy crop stresses using field images

4. Biotic and Abiotic Stress Responses in Crop Plants

5. Global climate state of the climate in 2019;Bull. Amer. Meteor.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3