Real-Time Counting and Height Measurement of Nursery Seedlings Based on Ghostnet–YoloV4 Network and Binocular Vision Technology

Author:

Yuan Xuguang,Li Dan,Sun Peng,Wang Gen,Ma Yalou

Abstract

Traditional nursery seedling detection often uses manual sampling counting and height measurement with rulers. This is not only inefficient and inaccurate, but it requires many human resources for nurseries that need to monitor the growth of saplings, making it difficult to meet the fast and efficient management requirements of modern forestry. To solve this problem, this paper proposes a real-time seedling detection framework based on an improved YoloV4 network and binocular camera, which can provide real-time measurements of the height and number of saplings in a nursery quickly and efficiently. The methodology is as follows: (i) creating a training dataset using a binocular camera field photography and data augmentation; (ii) replacing the backbone network of YoloV4 with Ghostnet and replacing the normal convolutional blocks of PANet in YoloV4 with depth-separable convolutional blocks, which will allow the Ghostnet–YoloV4 improved network to maintain efficient feature extraction while massively reducing the number of operations for real-time counting; (iii) integrating binocular vision technology into neural network detection to perform the real-time height measurement of saplings; and (iv) making corresponding parameter and equipment adjustments based on the specific morphology of the various saplings, and adding comparative experiments to enhance generalisability. The results of the field testing of nursery saplings show that the method is effective in overcoming noise in a large field environment, meeting the load-carrying capacity of embedded mobile devices with low-configuration management systems in real time and achieving over 92% accuracy in both counts and measurements. The results of these studies can provide technical support for the precise cultivation of nursery saplings.

Publisher

MDPI AG

Subject

Forestry

Reference47 articles.

1. Remote sensing for precision forestry;Dash;N. Z. J. For.,2016

2. Accuracy Assessment of Total Stem Volume Using Close-Range Sensing: Advances in Precision Forestry

3. Failure Detection in Eucalyptus Plantation Based on UAV Images

4. US Global Precision Market Projected to Reach $6.1 Billion by 2024, at a CAGR of 9% during 2019–2024,2019

5. Resource Allocation, Pit Quality, and Early Survival of Seedlings Following Two Motor-Manual Pit-Drilling Options

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3