A Novel Manganese-Rich Pokeweed Biochar for Highly Efficient Adsorption of Heavy Metals from Wastewater: Performance, Mechanisms, and Potential Risk Analysis

Author:

Yang Zhe,Hu Wenyong,Yao Bin,Shen Liangchen,Jiang Feifeng,Zhou Yaoyu,Núñez-Delgado AvelinoORCID

Abstract

A novel manganese-rich pokeweed biochar was prepared at different temperatures from manganese-rich pokeweed plants collected at manganese tailings, resulting in materials identified as BC300, BC400, and BC500. The synthetized biochar materials were investigated as regards their potential for removing Cu2+, Pb2+, and Cd2+, specifically in terms of adsorption performances, adsorption kinetics, adsorption isotherms, and potential environmental pollution risk. The results showed that the sorption process fitted well to the pseudo-second-order kinetic and Langmuir models, and the maximum adsorption capacities of BC500 were 246, 326, and 310 mg·g−1 for Cu2+, Pb2+, and Cd2+ respectively. The physicochemical characteristics of the biochars, and the adsorption mechanisms, were revealed by using scanning electron microscopy-energy spectrometer, elemental analysis, Brunauer–Emmett–Teller techniques, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The sorption mechanism of these three heavy metal ions onto biochars included ion exchange, electrostatic adsorption, chemical adsorption, and precipitation. Besides, the potential pollution risk of manganese-rich pokeweed biochars was significantly reduced after pyrolysis. Therefore, it is feasible to transform manganese-rich pokeweed biomass into manganese-rich pokeweed biochar with potential for heavy metals removal, showing high adsorption capacity, recyclability, and low environmental pollution.

Funder

Natural Science Foundation of Hunan Province, China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3