Multi-Objective Optimization in Air-to-Air Communication System Based on Multi-Agent Deep Reinforcement Learning

Author:

Lin Shaofu1ORCID,Chen Yingying1,Li Shuopeng1ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract

With the advantages of real-time data processing and flexible deployment, unmanned aerial vehicle (UAV)-assisted mobile edge computing systems are widely used in both civil and military fields. However, due to limited energy, it is usually difficult for UAVs to stay in the air for long periods and to perform computational tasks. In this paper, we propose a full-duplex air-to-air communication system (A2ACS) model combining mobile edge computing and wireless power transfer technologies, aiming to effectively reduce the computational latency and energy consumption of UAVs, while ensuring that the UAVs do not interrupt the mission or leave the work area due to insufficient energy. In this system, UAVs collect energy from external air-edge energy servers (AEESs) to power onboard batteries and offload computational tasks to AEESs to reduce latency. To optimize the system’s performance and balance the four objectives, including the system throughput, the number of low-power alarms of UAVs, the total energy received by UAVs and the energy consumption of AEESs, we develop a multi-objective optimization framework. Considering that AEESs require rapid decision-making in a dynamic environment, an algorithm based on multi-agent deep deterministic policy gradient (MADDPG) is proposed, to optimize the AEESs’ service location and to control the power of energy transfer. While training, the agents learn the optimal policy given the optimization weight conditions. Furthermore, we adopt the K-means algorithm to determine the association between AEESs and UAVs to ensure fairness. Simulated experiment results show that the proposed MODDPG (multi-objective DDPG) algorithm has better performance than the baseline algorithms, such as the genetic algorithm and other deep reinforcement learning algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3