A Novel Automatic Registration Method for Array InSAR Point Clouds in Urban Scenes

Author:

Cui Chenghao12,Liu Yuling1,Zhang Fubo1,Shi Minan12,Chen Longyong1,Li Wenjie12ORCID,Li Zhenhua12

Affiliation:

1. National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The array interferometric synthetic aperture radar (Array InSAR) system resolves shadow issues by employing two scans in opposite directions, facilitating the acquisition of a comprehensive three-dimensional representation of the observed scene. The point clouds obtained from the two scans need to be transformed into the same coordinate system using registration techniques to create a more comprehensive visual representation. However, the two-point clouds lack corresponding points and exhibit distinct geometric distortions, thereby preventing direct registration. This paper analyzes the error characteristics of array InSAR point clouds and proposes a robust registration method for array InSAR point clouds in urban scenes. It represents the 3D information of the point clouds using images, with pixel positions corresponding to the azimuth and ground range directions. Pixel intensity denotes the average height of points within the pixel. The KAZE algorithm and enhanced matching approach are used to obtain the homonymous points of two images, subsequently determining the transformation relationship between them. Experimental results with actual data demonstrate that, for architectural elements within urban scenes, the relative angular differences of registered facades are below 0.5°. As for ground elements, the Root Mean Square Error (RMSE) after registration is less than 1.5 m, thus validating the superiority of the proposed method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3