Double Augmentation: A Modal Transforming Method for Ship Detection in Remote Sensing Imagery

Author:

Mou Fangli1ORCID,Fan Zide1ORCID,Jiang Chuan’ao1,Zhang Yidan1,Wang Lei1,Li Xinming1

Affiliation:

1. Key Laboratory of Target Cognition and Application Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Ship detection in remote sensing images plays an important role in maritime surveillance. Recently, convolution neural network (CNN)-based methods have achieved state-of-the-art performance in ship detection. Even so, there are still two problems that remain in remote sensing. One is that the different modal images observed by multiple satellite sensors and the existing dataset cannot satisfy network-training requirements. The other is the false alarms in detection, as the ship target is usually faint in real view remote sensing images and many false-alarm targets can be detected in ocean backgrounds. To solve these issues, we propose a double augmentation framework for ship detection in cross-modal remote sensing imagery. Our method can be divided into two main steps: the front augmentation in the training process and the back augmentation verification in the detection process; the front augmentation uses a modal recognition network to reduce the modal difference in training and in using the detection network. The back augmentation verification uses batch augmentation and results clustering to reduce the rate of false-alarm detections and improve detection accuracy. Real-satellite-sensing experiments have been conducted to demonstrate the effectiveness of our method, which shows promising performance in quantitative evaluation metrics.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Future Star of Aerospace Information Research Institute, Chinese Academy of Sciences

Publisher

MDPI AG

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3