Ultra-Low Power All-Optically Tuned Hybrid Graphene Ultra Silicon-Rich Nitride Ring Resonator-Based Add-Drop Filter for DWDM Systems

Author:

Rukerandanga FilstonORCID,Musyoki Stephen,Ataro Edwin

Abstract

This research work conducted a design and simulation of an ultra-low power all-optically tuned nonlinear ring resonator-based add-drop filter. The purpose of this study is to investigate a CMOS-compatible nonlinear material system for an optical filter with temperature resilience, polarization insensitivity, and fast and energy-efficient tunability. The all-optical tunability was achieved using an optical pump that photo-excites the high nonlinear Kerr effect in the device material system. A three-dimensional multiphysics approach was used, combining the electromagnetics and thermo-structural effects in the filter. Hybrid graphene on an ultra-rich silicon nitride ring resonator-based filter enabled the realization of an ultra-high tuning efficiency (0.275 nm/mW for TE mode and 0.253 nm/mW for TM mode) on a range of 1.55 nm and thermal stability of 0.11 pm/K. This work contributed to the existing literature by proposing (1) the integration of a high Kerr effect layer on a low loss, high index contrast, and two-photon absorption-free core material with an athermal cladding material system and (2) the use of a cross-section shape insensitive to polarization. Moreover, the tuning mechanism contributed to the realization of an all-optical on-chip integrable filter for Dense Wavelength Division Multiplexing systems in the less occupied L band.

Funder

African Union Commission

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3