Near-Field Behaviors of Internal Energy Flows of Free-Space Electromagnetic Waves Induced by Electric Point Dipoles

Author:

Lee Hyoung-InORCID

Abstract

Both orbital and spin energy fluxes constitute the internal flows decomposed from a Poynting vector. For generic electromagnetic waves propagating through source-free media, these energy fluxes are quadratic in field variables so that their properties are not easily predictable. Notwithstanding, their near-field behaviors play important roles in nanoscale photonics. For time-oscillatory fields, we found two hitherto-overlooked distinctions between the two internal flows. The first is an unequal level between them because the vorticity of an orbital energy flux plays a role comparable to a spin energy flux itself. The second is regarding the electric-magnetic dual symmetry in handling the two internal flows, whence the reactive helicity plays a role as important as the electromagnetic helicity. By helicity conservation, an inter-electric-magnetic transport is possible for the spin angular momentum density, while the electric and magnetic constituents of orbital energy fluxes admit only respective intra-electric and intra-magnetic transports. We have tested the validities of all these claims by exemplarily taking the electromagnetic fields induced by an electric point dipole, either a linear or a circular one. We have thus made new contributions not only in deriving explicit forms of the internal energy flows but also in revealing the magnetic activities hidden under the electromagnetic waves induced by electric point dipoles.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3