Noise Reduction Method of Underwater Acoustic Signals Based on Uniform Phase Empirical Mode Decomposition, Amplitude-Aware Permutation Entropy, and Pearson Correlation Coefficient

Author:

Li Guohui,Yang ZhichaoORCID,Yang Hong

Abstract

Noise reduction of underwater acoustic signals is of great significance in the fields of military and ocean exploration. Based on the adaptive decomposition characteristic of uniform phase empirical mode decomposition (UPEMD), a noise reduction method for underwater acoustic signals is proposed, which combines amplitude-aware permutation entropy (AAPE) and Pearson correlation coefficient (PCC). UPEMD is a recently proposed improved empirical mode decomposition (EMD) algorithm that alleviates the mode splitting and residual noise effects of EMD. AAPE is a tool to quantify the information content of nonlinear time series. Unlike permutation entropy (PE), AAPE can reflect the amplitude information on time series. Firstly, the original signal is decomposed into a series of intrinsic mode functions (IMFs) by UPEMD. The AAPE of each IMF is calculated. The modes are separated into high-frequency IMFs and low-frequency IMFs, and all low-frequency IMFs are determined as useful IMFs (UIMFs). Then, the PCC between the high-frequency IMF with the smallest AAPE and the original signal is calculated. If PCC is greater than the threshold, the IMF is also determined as a UIMF. Finally, all UIMFs are reconstructed and the denoised signal is obtained. Chaotic signals with different signal-to-noise ratios (SNRs) are used for denoising experiments. Compared with EMD and extreme-point symmetric mode decomposition (ESMD), the proposed method has higher SNR and smaller root mean square error (RMSE). The proposed method is applied to noise reduction of real underwater acoustic signals. The results show that the method can further eliminate noise and the chaotic attractors are smoother and clearer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference39 articles.

1. Noise reduction method of ship radiated noise with ensemble empirical mode decomposition of adaptive noise;Yang;Noise Control Eng. J.,2016

2. A chaotic signal denoising method developed on the basis of noise-assisted nonuniformly sampled bivariate empirical mode decomposition;Wang;Acta Phys. Sin.,2014

3. Research on ship-radiated noise denoising using secondary variational mode decomposition and correlation coefficient;Li;Sensors,2018

4. Hierarchical Cosine Similarity Entropy for Feature Extraction of Ship-Radiated Noise

5. A complexity-based approach for the detection of weak signals in ocean ambient noise;Shashidhar;Entropy,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3