A Novel Freshwater Cyanophage Mae-Yong1326-1 Infecting Bloom-Forming Cyanobacterium Microcystis aeruginosa

Author:

Wang Fei,Li DengfengORCID,Cai Ruqian,Pan Lingting,Zhou Qin,Liu Wencai,Qian Minhua,Tong Yigang

Abstract

Microcystis aeruginosa is a major harmful cyanobacterium causing water bloom worldwide. Cyanophage has been proposed as a promising tool for cyanobacterial bloom. In this study, M. aeruginosa FACHB-1326 was used as an indicator host to isolate cyanophage from Lake Taihu. The isolated Microcystis cyanophage Mae-Yong1326-1 has an elliptical head of about 47 nm in diameter and a slender flexible tail of about 340 nm in length. Mae-Yong1326-1 could lyse cyanobacterial strains across three orders (Chroococcales, Nostocales, and Oscillatoriales) in the host range experiments. Mae-Yong1326-1 was stable in stability tests, maintaining high titers at 0–40 °C and at a wide pH range of 3–12. Mae-Yong 1326-1 has a burst size of 329 PFU/cell, which is much larger than the reported Microcystis cyanophages so far. The complete genome of Mae-Yong1326-1 is a double-stranded DNA of 48, 822 bp, with a G + C content of 71.80% and long direct terminal repeats (DTR) of 366 bp, containing 57 predicted ORFs. No Mae-Yong1326-1 ORF was found to be associated with virulence factor or antibiotic resistance. PASC scanning illustrated that the highest nucleotide sequence similarity between Mae-Yong1326-1 and all known phages in databases was only 17.75%, less than 70% (the threshold to define a genus), which indicates that Mae-Yong1326-1 belongs to an unknown new genus. In the proteomic tree based on genome-wide sequence similarities, Mae-Yong1326-1 distantly clusters with three unclassified Microcystis cyanophages (MinS1, Mwe-Yong1112-1, and Mwes-Yong2). These four Microcystis cyanophages form a monophyletic clade, which separates at a node from the other clade formed by two independent families (Zierdtviridae and Orlajensenviridae) of Caudoviricetes class. We propose to establish a new family to harbor the Microcystis cyanophages Mae-Yong1326-1, MinS1, Mwe-Yong1112-1, and Mwes-Yong2. This study enriched the understanding of freshwater cyanophages.

Funder

Mrs Dengfeng Li

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3