Affiliation:
1. Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
2. Lenox Hill Hospital, 100 E 77th St., New York, NY 10075, USA
Abstract
The main component of human skin is a collagen-rich extracellular matrix (ECM), known as the matrisome. The matrisome is essential for maintaining the structural integrity and mechanical properties of the skin. Recently, we reported notable decreases in matrisome proteins in natural aging and photoaging human skin. This study aims to investigate the mRNA expression of the core matrisome proteins in human skin, comparing young versus aged and sun-protected versus sun-exposed skin by quantitative real-time PCR and immunostaining. Our findings reveal a notable decrease in core matrisome transcription in aged skin. The mRNA expression of the core matrisome, such as collagen 1A1 (COL1A1), decorin, and dermatopontin, is significantly reduced in aged skin compared to its young skin. Yet, the majority of collagen mRNA expression levels of aged sun-exposed skin are similar to those found in young sun-exposed skin. This discrepancy is primarily attributable to a substantial decrease in collagen transcription in young sun-exposed skin, suggesting early molecular changes in matrisome transcription due to sun exposure, which preceded the emergence of clinical signs of photoaging. These findings shed light on the mRNA transcript profile of major matrisome proteins and their alterations in naturally aged and photoaged human skin, offering valuable insights into skin matrisome biology.
Funder
National Institute of Health
Dermatology Foundation Research