Acoustic Source Characterization of Marine Propulsors

Author:

Tanttari Jukka,Hynninen AnttiORCID

Abstract

Marine propulsors represent one of the most important contributors among anthropogenic sounds radiated into water. Blade based propulsors, e.g., propellers, generate tones at the blade passing frequency and its harmonics, especially in cavitating conditions. In addition to hydrodynamic noise, pressure fluctuations cause vibrations in ship hull leading to mechanical noise. For noise prediction purposes, it is highly beneficial to characterize the noise sources as simplified, complex valued arrays having information on source positions, source strengths and phases. In this paper, procedure to characterize marine propulsors as acoustic sources with inverse method is introduced. First, the numerical model with complete hydro-acoustic sources is investigated. Second, a source model composed of sensible number and distribution of elementary (“equivalent”) compact sources is specified. Then selected responses are used as input in source characterization with inverse method. Finally, the model with equivalent sources is solved and the results are validated by comparison against the results from the complete simulation model. The introduced acoustic source characterization procedure of marine propulsors is applicable also for the responses determined experimentally, e.g., in a cavitation tunnel when the pressure transducer array is determined appropriately.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference41 articles.

1. Directive 2008/56/EC of the European Parliament and of the Council. Council Decision of 2008;Directive, Strategy Framework

2. European Marine Strategy Framework Directive Good Environmental Status (MSFD-GES). Report of the Technical Subgroup on Underwater Noise and Other Forms of Energy;van der Graaf,2012

3. Underwater Noise of Research Vessels. Review and Recommendations,1995

4. Trends and developments in international regulation of anthropogenic sound in aquatic habitats

5. Underwater Noise,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3