Dependence of Convective Cloud Properties and Their Transport on Cloud Fraction and GCM Resolution Diagnosed from a Cloud-Resolving Model Simulation

Author:

Zhang Zhanjie,Zhang Guang J.ORCID

Abstract

The scale-aware convective parameterization for high resolution global climate models must satisfy the requirement that the parameterized subgrid convective transport diminishes as the model resolution increases to convection-resolving resolutions. A major assumption in current scale-aware convection schemes is that the differences between convective cloud properties and their environmental counterparts are independent of cloud fraction. This study examines convective cloud vertical velocity, moist static energy (MSE), moisture, and the vertical eddy transport of MSE and moisture for different averaging subdomain sizes and fractional convective cloudiness using a cloud resolving model simulation of a midlatitude mesoscale convective system. Results show that convective cloud fraction, mass flux, and vertical transport of MSE and moisture increase with decreasing subdomain size. The differences between convective cloud properties in both updrafts and downdrafts and their environment depend on both cloud fraction and the averaging subdomain size. For a given subdomain size, the differences increase with cloud fraction, in contrast to the assumption used in current scale-aware convection parameterization schemes. A consequence of this is that the parameterized convective eddy transport reaches maximum at a higher cloud fraction than believed in previous studies. This has implications on how fast the subgrid convective transport should diminish as GCM resolution increases.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3