A Novel Discrete Group Teaching Optimization Algorithm for TSP Path Planning with Unmanned Surface Vehicles

Author:

Yang ShaolongORCID,Huang Jin,Li Weichao,Xiang XianboORCID

Abstract

A growing number of researchers are interested in deploying unmanned surface vehicles (USVs) in support of ocean environmental monitoring. To accomplish these missions efficiently, multiple-waypoint path planning strategies for survey USVs are still a key challenge. The multiple-waypoint path planning problem, mathematically equivalent to the traveling salesman problem (TSP), is addressed in this paper using a discrete group teaching optimization algorithm (DGTOA). Generally, the algorithm consists of three phases. In the initialization phase, the DGTOA generates the initial sequence for students through greedy initialization. In the crossover phase, a new greedy crossover algorithm is introduced to increase diversity. In the mutation phase, to balance the exploration and exploitation, this paper proposes a dynamic adaptive neighborhood radius based on triangular probability selection to apply in the shift mutation algorithm, the inversion mutation algorithm, and the 3-opt mutation algorithm. To verify the performance of the DGTOA, fifteen benchmark cases from TSPLIB are implemented to compare the DGTOA with the discrete tree seed algorithm, discrete Jaya algorithm, artificial bee colony optimization, particle swarm optimization-ant colony optimization, and discrete shuffled frog-leaping algorithm. The results demonstrate that the DGTOA is a robust and competitive algorithm, especially for large-scale TSP problems. Meanwhile, the USV simulation results indicate that the DGTOA performs well in terms of exploration and exploitation.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3