Author:
Fang Qingchao,Zhao Xin,Li Sunbo,Qiu Zhengsong,Wang Zhiyuan,Geng Qi
Abstract
Effective control of the cohesive force between hydrate particles is the key to prevent their aggregation, which then causes pipeline blockage. The hydrophilic–lipophilic balance (HLB) value of surfactants was proposed as an important parameter for the evaluation and design of hydrate anti-agglomerants. A microscopic manipulation method was used to measure the cohesive forces between cyclopentane hydrate particles in the presence of Tween and Span series surfactants with different HLB values; moreover, the measured cohesive force was compared with the results of calculations based on the liquid bridge force model. Combined with the surface morphology and wettability of the hydrate particles, we analyzed the mechanism by which surfactants with different HLB values influence the cohesion between hydrate particles. The results show that for both Tween (hydrophilic, HLB > 10) and Span (hydrophobic, HLB < 10) surfactants, the cohesive force between cyclopentane hydrate particles decreased with decreasing HLB. The experimental results were in good agreement with the results of calculations based on the liquid bridge force model. The cohesive force between hydrate particles increased with increasing concentration of Tween surfactants, while in the case of the Span series, the cohesive force decreased with increasing surfactant concentration. In the formation process of cyclopentane hydrate particles, the aggregation of low-HLB surfactant molecules at the oil–water or gas–water interface increases the surface roughness and hydrophobicity of the hydrate particles and inhibits the formation of liquid bridges between particles, thus reducing the cohesion between particles. Therefore, the hydrate aggregation and the associated blockage risks can be reduced.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献