A Frequency-Dependent Assimilation Algorithm: Ensemble Optimal Smoothing

Author:

He Zhongjie,Zhao Yueqi,Fu XiachuanORCID,Sheng Xin,Xu Siwen

Abstract

Motivated by the need for a simple and effective assimilation scheme that could be used in a relocatable ocean model, a new assimilation algorithm called ensemble optimal smoothing (EnOS) was developed. This scheme was a straightforward extension of the ensemble optimal interpolation (EnOI) by involving time correlation information in the Kalman gain. The main advantage of this scheme was the ability to estimate the present state from the time history of observation. We first examined the new scheme in an ideal ocean model using simulated observations. Further applying these two assimilation schemes to the Chinese offshore and adjacent waters, the root-mean-square error (RMSE) of the EnOS scheme was reduced by 6.4% relative to EnOI. The results showed that the EnOS was more efficient and effective in eliminating model errors when compared to the EnOI scheme.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3