Study of Two Ships Approaching Process and Towing Motion under Wave Action

Author:

Chen Shengtao,Zou Han,Qi Guocai,Li Dongju,Xu Zhouyuan

Abstract

The rescue of ships in distress at sea relies mainly on rescue vessels, which includes the approaching process and the towing motion of the two ships. Ship rescue can be reduced to a two-ship problem, primarily involving the relative motion between ships during rescue. We established a mathematical model of ship motion based on the viscous fluid N-S equation, and the approaching process of two Wigley ships under waves was simulated in a two-dimensional plane. Then, according to three-dimensional potential flow theory, the coupled motion response model of the ships under six degrees of freedom was constructed, and calculation models of wind, waves, currents and other environmental disturbance factors were established to numerically calculate the towing motion. The results show that the upstream vessel has a lower heave motion amplitude and higher roll motion amplitude during the approaching process; A ratio of 1.5 times the width of the ship is the critical area where the motion of the two ships interacts with each other; For the berthing process, the faster the motion of the active vessel is, the lower the motion amplitude will be for both upstream and downstream vessels. When towing under rough sea conditions, changes in wave height and towing velocity have a large influence on the coupling effect of the towing system. When towing, head-on waves and low sea conditions are preferred, and the velocity should be sufficiently high to reduce the influence of cable self-weight on the towed ship. According to the simulations, the recommended velocity range is 3–5 m/s. Finally, a ship model scaling model was developed based on the similar quasi-Froude number of the ship model test, and the simulation results were verified by conducting parallel and towing tests of the model in a basin with a spherical wave-maker device.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3