Nonlinear Innovation-Based Maneuverability Prediction for Marine Vehicles Using an Improved Forgetting Mechanism

Author:

Song Chunyu,Zhang XiankuORCID,Zhang GuoqingORCID

Abstract

This paper carries out marine vehicle maneuverability prediction based on nonlinear innovation. An improved Extended Kalman Filter (EKF) algorithm combined with a forgetting factor is developed by virtue of nonlinear innovation for ship maneuverability using full-scale data. Compared with existing algorithms, the proposed algorithm has high prediction consistency, a good prediction effect, and takes a shorter time to reach the agreement. Furthermore, the real-time prediction data are more than 95% consistent with the actual ship navigation. The forgetting factor is introduced to reduce the cumulative impact of historical interference data. Then, the tangent function is used to process errors; this can solve the problem of inaccurate maneuvering prediction of traditional identification algorithms, making up for the limitations of existing methods. The real-time prediction results are compared with the full-scale data, showing that the proposed ship prediction model has significant prediction accuracy and that the algorithm is reliable. This parameter identification method can be used to establish ship maneuvering prediction models.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3