Numerical Simulation and Analysis of Water and Suspended Sediment Transport in Hangzhou Bay, China

Author:

Huang JuORCID,Yuan Rui,Zhu JianrongORCID

Abstract

Hangzhou Bay is a large, high-turbidity shallow bay located on the southern side of the Changjiang Estuary, China. The process and dynamic mechanisms of water and sediment transport in the bay are not yet clear. An improved three-dimensional sediment numerical model that combined various dynamic factors was established to simulate and analyze these mechanisms. The residual current cannot properly represent the net water and sediment transport, and the residual unit width water flux (RUWF) and residual unit width sediment flux (RUSF) were used to explain the water and sediment transport. The results of numerical simulations indicate that in summer, the surface RUWF from the Changjiang Estuary near Nanhui Cape flows westward along the coast, in which the major part flows southward to the Zhenhai area, and the small part flows further westward along the north coast and then turns to the south coast and eastward, forming the water transport pattern of north-landward and south-seaward, which is stronger in the spring tide than in the neap tide. The bottom RUWF near Zhenhai flows northward to Nanhui Cape in the neap tide, which is larger in the neap tide than in the spring tide. In the middle and western parts of the bay, the RUWF has the same pattern as the surface water transport and is stronger in the spring tide than in the neap tide. The pattern of RUSF is roughly similar to the water flux transport. During the spring tide, the water and sediment transport fluxes near Nanhui Cape are from the Changjiang Estuary into Hangzhou Bay, but from Hangzhou Bay into the Changjiang Estuary during the neap tide. In the winter, the distributions of RUWF, RUSF, and suspended sediment concentration (SSC) are similar to those in the summer. In addition, the distance of surface water transport westward along the north coast is shorter than that in the summer, the magnitude of the bottom RUWF is smaller than that in the summer due to the weaker salinity gradient, and the bottom RUSF near Nanhui Cape is weaker than that in the summer during the neap tide. The net transect water flux (NTWF) and the net transect sediment flux (NTSF) near Nanhui Cape are from the Changjiang Estuary into Hangzhou Bay during the spring tide; during the neap tide, the NTWF is still from the Changjiang Estuary into Hangzhou Bay, but the NTSF is from Hangzhou Bay into the Changjiang Estuary because the SSC is much higher in the bottom layer than in the surface layer. The dynamic reason for the temporal and spatial variation in RUWF and RUSF is that the barotropic pressure gradient force is larger than the baroclinic pressure gradient force during the spring tide and is the opposite during the neap tide.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3