Abstract
Structural health monitoring (SHM) systems are designed to continually monitor the health of structures (e.g., civil, aeronautic) by using the information collected through a distributed sensor network. However, performing tests on real structures, such as wind turbines, implies high logistic and operational costs. Therefore, there is a need for a vibration test system to evaluate designs at smaller scales in a laboratory setting in order to collect data and devise predictive maintenance strategies. In this work, the proposed vibration test system is based on a lab-scale wind turbine jacket foundation related primarily to an offshore environment. The test system comprises a scaled wave generator channel, a desktop application (WTtest) to control the channel simulations, and a data acquisition system (DAQ) to collect the information from the sensors connected to the structure. Various equipment such as accelerometers, electrodynamic shaker, and DAQ device are selected as per the design methodology. Regarding the mechanical part, each component of the channel is designed to be like the wave absorber, the mechanical multiplier, the piston-type wavemaker, and the wave generator channel. For this purpose, the finite element method is used in static and fatigue analysis to evaluate the stresses and deformations; this helps determine whether the system will work safely. Moreover, the vibration test system applies to other jacket structures as well, giving it greater utility and applicability in different research fields. In sum, the proposed system is compact and has three well-defined components that work synchronously to develop the experimental simulations.
Funder
Ministry of Economy, Industry and Competitiveness
Government of Catalonia
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献