Validation and Comparisons of Methodologies Implemented in a RANS-VoF Numerical Model for Applications to Coastal Structures

Author:

Didier EricORCID,Teixeira Paulo R. F.

Abstract

Methodologies to be used in numerical models based on Reynolds-averaged Navier–Stokes (RANS) equations and the volume of fluid (VoF) to deal with waves over coastal structures, which involve wave breaking and overtopping and porous structures, are shown in this manuscript. Two turbulence models, k-ε NLS (non-linear Reynolds stress tensor) and k-ε SCM (stabilized closure model), that are used to avoid the growth of the eddy viscosity, are implemented in the FLUENT® numerical model. Additionally, equations of momentum and turbulence models are adapted to simulate porous media of coastal structures. Comparisons of performance of k-ε NLS, k-ε SCM and standards k-ε and k-ω SST models in several classical cases of regular and random waves on coastal structures are carried out. It was noticed that the standard k-ε turbulence model, and k-ω SST with less intensity, over-predicted eddy viscosity, caused the decay of the free surface elevation and under-estimated wave overtopping discharge. k-ε NLS and k-ε SCM turbulence models have similar performance, with slightly better results of k-ε NLS, showing good agreement with experimental ones.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3