Author:
Wang Jingqiang,Hou Zhengyu,Li Guanbao,Kan Guangming,Liu Baohua,Meng Xiangmei,Hua Qingfeng,Sun Lei
Abstract
The acoustic characteristics of three fine-grained sediments (silty sand, silt, silty clay) in the South China Sea (SCS) were measured and analyzed at high frequency range of 27–247 kHz. The measurement results show that the sound speed dispersion is a positive linear relation at the measured frequency range, and the attenuation follows nonlinear frequency dependence, α = kfn, where n ranges from 0.59 to 0.85 for the three different sediments in the SCS. The frequency dependence of sound speed and attenuation were compared with the published literature. It was found that for silty clay, clayey silt, silt, and silty sand, the dispersion characteristics of these four sediments are basically consistent; in general, the dispersion of coarse particles is significant, and that of fine particles is weak, and permeability is the key parameter that determines the inflection point of high frequency to low frequency. By modeling these sediments with the Biot–Stoll model, it was found that the Biot–Stoll model can better predict the frequency-dependent characteristics of sound attenuation in a high-frequency band under the matching constraints of sound speed dispersion characteristics, indicating that the Biot–Stoll model has good applicability to different types of sediments in a high-frequency band.
Funder
National Key R&D Program of China
Basic Scientific Fund for National Public Research Institutes of China
National Natural Science Foundation of China
Youth Innovation Promotion Association CAS, the Rising Star Foundation of The Integrated Research Center For Islands And Reefs Sciences, CAS
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献