Abstract
Finger vein recognition has drawn increasing attention as one of the most popular and promising biometrics due to its high distinguishing ability, security, and non-invasive procedure. The main idea of traditional schemes is to directly extract features from finger vein images and then compare features to find the best match. However, the features extracted from images contain much redundant data, while the features extracted from patterns are greatly influenced by image segmentation methods. To tackle these problems, this paper proposes a new finger vein recognition algorithm by generating code. The proposed method does not require an image segmentation algorithm, is simple to calculate, and has a small amount of data. Firstly, the finger vein images were divided into blocks to calculate the mean value. Then, the centrosymmetric coding was performed using the matrix generated by blocking and averaging. The obtained codewords were concatenated as the feature codewords of the image. The similarity between vein codes is measured by the ratio of minimum Hamming distance to codeword length. Extensive experiments on two public finger vein databases verify the effectiveness of the proposed method. The results indicate that our method outperforms the state-of-the-art methods and has competitive potential in performing the matching task.
Funder
Science and Technology Department of Sichuan Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献